

Systems Modules Components

Беспроводные модули МВее Прикладной программный интерфейс МВее API

Board Revision All
Product Name MBee API
Doc Name sw_api_31
Revision Date 29.01.2012
Revision Number 7

Оглавление

1. Введение			
	1.1. Список сокращений, используемых в документе	2	
	1.2. Аппаратные требования	2	
2.	MBee API		
	2.1. Общий формат АРІ фрейма	4	
	2.2. MT CMD	4	
3.	Команды МТ АРІ	5	
	3.1. SYS_PING	5	
	3.2. SYS_RESET_IND	6	
	3.3. SYS_VERSION	6	
	3.4. UTIL_GET_DEVICE_INFO	7	
	3.5. ZDO_END_DEVICE_ANNCE_IND	8	
	3.6. ZDO_MGMT_NWK_DISC_REQ	9	
	3.7. ZDO_MGMT_NWK_DISC_RSP	. 10	
	3.8. ZDO_MGMT_PERMIT_JOIN_REQ	. 11	
4.	Взаимодействие с узлами сети	. 12	
	4.1. AF_DATA_REQUEST	. 12	
	4.2. AF_DATA_CONFIRM	. 13	
	4.3. AF_DATA_RESPONSE	. 14	
5.	Использование кластеров MBee API	. 15	
	5.1. Список кластеров МВее АРІ	. 15	
6.	Управление цифровыми портами модуля	. 16	
7.	Чтение параметров модуля	. 17	
	7.1. Получить дату ревизии прошивки модуля	. 17	
	7.2. Получить информацию о версии модуля	. 18	
	7.3. Получить период поллинга (Poll Rate)	. 19	
	7.4. Получить период автоматического опроса портов ввода-вывода	. 20	
	7.5. Получить адрес накопителя (агрегатора) данных автоматического опроса	. 21	
	7.6. Получить значение встроенного датчика температуры	. 22	
8.	Запись параметров модуля	. 23	
	8.1. Установить период поллинга (Poll Rate)	. 23	
	8.2. Установить период автоматического опроса портов ввода-вывода	. 24	
	8.3. Установить адрес накопителя (агрегатора) данных автоматического опроса	. 25	
	8.4. Установить значение встроенного датчика температуры	. 26	
9.	Чтение состояния цифровых и аналоговых портов ввода вывода	. 27	
	9.1. Структура данных цифровых и аналоговых входов	. 28	
10.	Автоматический циклический самоопрос модуля	. 29	
11.	Структура поля версии модулей МВее	. 30	
12.	Примеры фреймов	. 31	
	12.1. Анонс узла присоединившегося к сети	. 31	
	12.2. Управление цифровым выходом	. 32	
	12.3. Данные цифровых и аналоговых входов	. 33	
13.	Техническая поддержка	. 34	

1. Введение

В этом документе представлен прикладной программный интерфейс MBee API, который разработан на основе интерфейсов Monitor and Test (MT) компании Texas Instruments Inc. и является его дополнением.

Для знакомства с интерфейсами МТ в настоящем документе приводится описания команд из категорий МТ_AF, MT_SYS, MT_ZDO опубликованные Texas Instruments Inc. в руководстве Z-Stack Monitor and Test API (Document Number: SWRA198 Revision 1.6).

1.1. Список сокращений, используемых в документе.

ADC Analog to Digital Conversion
AF Application Framework

API Application Framework Interface

AREQ Asynchronous Request
FCS Frame Check Sequence
LSB Least Significant byte first

MBee API SysMC API based on Texas Instruments MT interfaces

MT Monitor and Test SOF Start of Frame

SREQ Synchronous Request
SRSP Synchronous Response
ZDO ZigBee Device Object

Z-Stack Texas Instruments ZigBee protocol stackZ-Tool Texas Instruments ZigBee PC-based test tool

1.2. Аппаратные требования.

Модули МВее, производимые компанией «Системы, Модули и Компоненты», выпускаются в различном аппаратном исполнении, и содержат в себе различные варианты прошивок для решения задач пользователя.

Для знакомства с возможностями модулей MBee, компания выпускает отладочный набор MbeeKit Start, включающий необходимые платы поддержки и модули, позволяющие развернуть сеть ZigBee и подключить к последовательному порту модули, поддерживающие работу через UART.

sw_api_31 -2-

2. MBee API

МВее API это прикладной программный интерфейс, который описывает взаимодействие приложения пользователя и модуля МВее через последовательный порт RS-232. Обмен информацией с модулем осуществляется с помощью блоков структурированных данных, называемых API фреймами.

АРІ фреймы определяют формат, в соответствии с которым, модулю передаются команды, принимаются ответы и статусные сообщения. Формат фрейма гарантирует обнаружение начала и конца сообщения, а так же его целостность.

Транспортным протоколом для обмена сообщениями является последовательный порт RS-232, со следующими параметрами передачи:

- скорость 38400
- четность None
- биты данных 8
- стоповые биты 1
- управление потоком RTS/CTS

Примечание.

Модули MBee, предназначенные для использования в качестве прозрачного радиоудлинителя последовательного порта, могут быть настроены на иные параметры RS-232 и не поддерживают взаимодействие по описанному в данном документе протоколу.

Модули MBee, предназначенные для использования в качестве датчиков, используют линии ввода-вывода для взаимодействия с периферией и не могут быть подключены к последовательному порту.

sw_api_31 -3-

2.1. Общий формат АРІ фрейма

API фреймы пересылаются между приложением пользователя и целевым устройством ZigBee.

Каждый фрейм начинается с байта-заголовка **SOF** (Start of Frame), содержит поле переменной длины **MT CMD** и завершается контрольным байтом **FCS** (Frame Check Sequence).

Поле	SOF	MT CMD	FCS
Длина в байтах	1	3-253	1

SOF (Start of Frame): это однобайтовое поле, со значением равным 0xFE, которое определяет начало фрейма.

MT CMD (Monitor Test Command): содержит один байт определяющий длину поля данных, 2 байта идентификатора команды MT API, и необязательное поле данных. Подробное описание приводится в следующей главе.

FCS (Frame Check Sequence): это однобайтовое поле позволяющее подтвердить целостность пакета. Значение вычисляется как операция XOR над каждым байтом фрейма, исключая первый и последний.

Алгоритм расчета контрольного байта на С#.

```
static byte Compute(byte[] buffer)
{
      const int lenPos = 1;
      int sumPos = buffer.Length - 1;
      int sum = 0;

      for (int I = lenPos; I < sumPos; i++)
      {
            sum = sum ^ buffer[i];
      }
      return (byte)sum;
}</pre>
```

2.2. MT CMD

Поле MT CMD определяет информацию для взаимодействия с модулем.

Поле	LEN	CMD	DATA
Длина в байтах	1	2	0-250

LEN (Length): Однобайтовое значение, определяющее длину поля DATA. Если поле DATA отсутствует, значение поля LEN должно быть установлено равным нулю и общая длина поля MT CMD, в таком случае составит 3 байта.

CMD (Command Id): Два байта, представляющие идентификатор команды для текущего фрейма.

DATA: Содержит данные фрейма. Длина этого поля зависит от команды и может быть от 0 до 250 байт.

sw_api_31 - 4 -


3. Команды МТ АРІ

3.1. SYS_PING

Описание.

Эта команда используется как запрос к локальному модулю для проверки работоспособности устройства и линии связи.

Использование SREQ

Параметры.

Отсутствуют.

Ответ SRSP

1	2	2
Len = $0x02$	Cmd = 0x6101	Capabilities

Параметры.

		_		
Поле	Длина	Описание		
Capabilities	2	Поле битовых фл	агов, представляющее программные	
		интерфейсы, поддерживаемые прошивкой данного модуля		
		MT_CAP_SYS	0x0001	
		MT_CAP_MAC	0x0002	
		MT_CAP_NWK	0x0004	
		MT_CAP_AF 0x0008		
		MT_CAP_ZDO 0x0010		
		MT_CAP_SAPI	0x0020	
		MT_CAP_UTIL	0x0040	
		MT_CAP_DEBUG	0x0080	
		MT_CAP_APP	0x0100	
		MT_CAP_ZOAD	0x1000	

sw_api_31 -5-

3.2. SYS_RESET_IND

Описание.

Эта команда высылается со стороны локального модуля для индикации произошедшего сброса.

Использование AREQ

1	2	1	5
Len = 0x06	Cmd = 0x4180	Reason	Version

Параметры.

Поле	Длина	Описание		
Reason	1	Причина сброса		
		0x00 Power-up		
		0x01 External		
		0x02 Watch-dog		
Version	5	см. описание в гл. 11		

3.3. SYS_VERSION

Описание.

Эта команда позволяет получить версию прошивки локального модуля.

Использование SREQ

Параметры.

Отсутствуют.

Ответ SRSP

1	2	5
Len = $0x05$	Cmd = 0x6102	Version

Параметры.

Поле	Длина	Описание
Version	5	см. описание в гл. 11

sw_api_31 -6-

3.4. UTIL_GET_DEVICE_INFO

Описание.

Эта команда позволяет получить информацию о локальном модуле.

Использование SREQ

1 2 Len = 0x00 Cmd = 0x2700

Параметры.

Отсутствуют.

Ответ SRSP

1	2	1	8	2	1
Len	Cmd = 0x6700	Status	IEEEAddr	ShortAddr	DeviceType
продолжение					
1	1	0-128			
DeviceState	NumAssocDevices	AssocDe	eviceList		

Параметры.

- L L		
Поле	Длина	Описание
Status	1	0 – успешно, иное значение – ошибка
IEEEAddr	8	64-битный адрес узла
ShortAddr	2	16-битный адрес узла
DeviceType	1	Тип узла
		0x00: Coordinator
		0x01: Router
		0x02: EndDevice
DeviceState	1	Текущий статус модуля
		0x00: Initialized - not started automatically
		0x01: Initialized - not connected to anything
		0x02: Discovering PAN's to join
		0x03: Joining a PAN
		0x04: Rejoining a PAN, only for end devices
		0x05: Joined but not yet authenticated by trust center
		0x06: Started as device after authentication
		0x07: Device joined, authenticated and is a router
		0x08: Starting as ZigBee Coordinator
		0x09: Started as ZigBee Coordinator
		0x0A: Device has lost information about its parent
NumAssocDevices	1	Количество ассоциированных дочерних узлов
AssocDeviceList	0-128	Массив 16-битных адресов дочерних узлов ассоциированных
		с данным модулем.

sw_api_31 -7-

3.5. ZDO_END_DEVICE_ANNCE_IND

Описание.

Эта команда высылается локальным модулем при получении широковещательного анонса узла подключившегося к сети (End Device Announce).

Использование AREQ

1	2	2	2	8	1
Len = $0x0D$	Cmd = 0x45C1	SrcAddr	NwkAddr	IEEEAddr	Capabilities

Параметры.

Поле	Длина	Описание	
SrcAddr	2	16-битный адрес отправителя	
NwkAddr	2	16-битный адрес узла	
IEEEAddr	8	64-битный адрес узла	
Capabilities	1	Биты, определяющие свойства узла	
		bit 0: 1 - Alternate PAN Coordinator	
		bit 1: Device type	
		0 – End Device	
		1 – Router	
		bit 2: Power Source	
		0 – Battary powered	
		1 – Main powered	
		bit 3: Receiver on when Idle	
		0 – Off	
		1 – On	
		bit 4: – Reserved	
		bit 5: – Reserved	
		bit 6: – Security capability	
		bit 7: – Reserved	

sw_api_31 -8-

3.6. ZDO_MGMT_NWK_DISC_REQ

Описание.

Эта команда отправляет указанному узлу запрос на обнаружение сети.

Использование SREQ

1	2	2	4	1	1
Len = 0x08	Cmd = 0x2530	DstAddr	ScanChannels	ScanDuration	StartIndex

Параметры.

параметры:				
Поле	Длина	Описание	Описание	
DstAddr	2	16-битный адр	16-битный адрес узла выполняющего поиск сети	
ScanChannels	4	Маска каналов	для сканирования	
		NONE	0x0000000	
		ALL_CHANNELS	0x07FFF800	
		CHANNEL 11	0x00000800	
		CHANNEL 12	0x00001000	
		CHANNEL 13	0x00002000	
		CHANNEL 14	0x00004000	
		CHANNEL 15	0x00008000	
		CHANNEL 16	0x00010000	
		CHANNEL 17	0x00020000	
		CHANNEL 18	0x00040000	
		CHANNEL 19	0x00080000	
		CHANNEL 20	0x00100000	
		CHANNEL 21	0x00200000	
		CHANNEL 22	0x00400000	
		CHANNEL 23	0x00800000	
		CHANNEL 24	0x01000000	
		CHANNEL 25	0x02000000	
		CHANNEL 26	0x04000000	
ScanDuration	2	Время сканиро	вания	
StartIndex	1	Начальный инд	декс. Так как результат может содержать	
		несколько запи	исей, это поле позволяет определить индекс,	
		с которого дол	жен быть построен ответ.	

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6530	Status

Параметры.

Поле	Длина	Описание
Status	1	0 – успешно

Ответ AREQ см. команду AD_DATA_CONFIRM гл. 4.2

Ответ AREQ см. команду ZDO_MGMT_NWK_DISC_RSP гл. 3.7

sw_api_31 -9-

3.7. ZDO_MGMT_NWK_DISC_RSP

Описание.

Эта команда является ответом на команду обнаружения сети.

Использование AREQ

1	2	2	1	1	1
Len = $0x06-0x4E$	Cmd = 0x45B0	SrcAddr	Status	NetworkCount	StartIndex
продолжение					
1	0-72				
NetworkListCount	NetworkList				

Параметры.

Поло	П	0
Поле	Длина	Описание
SrcAddr	2	16-битный адрес отправителя
Status	1	0 – успешно, иное значение – ошибка
NetworkCount	1	Общее количество обнаруженных сетей
StartIndex	1	Начальный индекс, с которого отправлен ответ
NetworkListCount	1	Количество записей
NetworkList	List	Maccив записей NetworkList

Структура записи NetworkList.

Поле	Длина	Описание	
PAN ID	2	PAN ID сети	
Ext PAN ID			
Logical Channel	1	Номер логическог	о канала сети
Stack Profile	1	StackProfile	bits 3-0
ZigBee Version		ZigBeeVersion	bits 7-4
Beacon Order	1	BeaconOrder	bits 3-0
Super frame		SuperframeOrder	bits 7-4
Order			
Permit Joining	1	0: подключения за	апрещены
		1: подключения р	азрешены

sw_api_31 - 10 -

3.8. ZDO_MGMT_PERMIT_JOIN_REQ

Описание.

Эта команда отправляет указанному узлу запрос на разрешение подключений.

Использование SREQ

1	2	2	1	1
Len = 0x04	Cmd = 0x2536	DstAddr	Duration	TCSignificance

Параметры.

Поле	Длина	Описание
DstAddr	2	16-битный адрес узла
Duration	1	0х00 подключения запрещены
		0xFF подключения разрешены
		0x01-0xFE интервал в секундах, в течении которого
		узлу разрешено принимать подключения
TCSignificance	1	Trust Center Significance (значение 0)

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6530	Status

Параметры.

Поле	Длина	Описание
Status	1	0 – успешно

Ответ AREQ см. команду AD_DATA_CONFIRM гл. 4.2

sw_api_31 - 11 -

4. Взаимодействие с узлами сети

4.1. AF_DATA_REQUEST

Описание.

Для обмена данными между узлами сети, модули MBee используют интерфейс AF_DATA_REQUEST из подмножества MT_AF. На уровне приложений, узлы сети ZigBee предоставляют подключенные конечные точки (EndPoint), каждая из которых может обслуживать несколько кластеров (Cluster ID). Интерфейс фрейма AF_DATA_REQUEST использует эти идентификаторы для подготовки и отправки данных удаленному узлу.

Использование SREQ

1		2		2		1	1	2
$Len = 0x0A - 0x8A \qquad C$		Cmd = 0x	nd = 0x2401 DstAddr			DstEndpoint	SrcEndpoint	ClusterId
продолжени	1e							
1	1	1	1		0-12	8		
TransId	Options	Radius	AfDa	taLen	AfDa	ta		

Параметры.

Поле	Длина	Описание
DstAddr	2	16-битный адрес узла, которому адресованы данные
DstEndpoint	1	Идентификатор конечной точки
SrcEndpoint	1	Идентификатор конечной точки
ClusterId	2	Идентификатор кластера
TransId	1	Идентификатор транзакции (назначается произвольно)
Options	1	Опциональные флаги передачи
		bit 4: APS acknowledge
		bit 5: discover route
		bit 6: APS security
		bit 7: skip routing
Radius	1	Определяет количество разрешенных прыжков для достижения
		узла назначения. Значение по умолчанию = 7
AfDataLen	1	Длина следующего поля
AfData	0-128	Необязательное поле данных

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

Параметры.

Поле	Длина	Описание
Status	1	0 - успешно

Ответ AREQ см. команду AD_DATA_CONFIRM гл. 4.2

sw_api_31 - 12 -

4.2. AF DATA CONFIRM

Описание.

Эта команда высылается асинхронно (ответ AREQ), в качестве подтверждения доставки после отправки данных узлу сети. Если при использовании интерфейса AF_DATA_REQUEST в поле Options установлен флаг APS acknowledge, то подтверждение высылается после того, как фрейм достигнет узла назначения. В противном случае, подтверждение высылается после того, как фрейм достигнет первого узла на маршруте (first hope).

Подтверждение высылается после локального (ответ SRSP), если запрос был адресован удаленному узлу, но может быть получено до него, если запрос адресовался модулю, подключенному локально.

Для контроля передачи и подтверждения пользователю предоставляется поле Идентификатора транзакции, которое отождествляет отправленный фрейм и фрейм подтверждения доставки.

Ответ AREQ

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

Параметры.

Поле	Длина	Описание
Status	1	0 - успешно
EndPoint	1	Идентификатор конечной точки
TransId	1	Идентификатор транзакции

Примечание.

Время ожидания подтверждения может варьироваться в зависимости от использования флага APS acknowledge, глубины узла, его доступности, периода полинга и т.д.

sw_api_31 - 13 -

4.3. AF_DATA_RESPONSE

Описание.

Эта команда определяет фрейм входящих данных.

Данные могут быть получены от модулей, выполняющих цикл автоматического самоопроса или как асинхронный ответ (ответ AREQ) на запрос данных, после фрейма подтверждения доставки, описанного выше.

Ответ AREQ

1	2	2	1	1		1	1
Len = $0x12 - 0x50$	Cmd = 0x4881	ClusterID	EndPoint	WasBroad	lcast	LinkQuality	RSSI
продолжение							
8	2		1	1-63			
IEEEAddress	NetworkAddress	s i	AfDataLen	AfData			

Параметры.

Поле	Длина	Описание
ClusterID	2	Идентификатор кластера 16-битный адрес узла, которому
		адресованы данные
EndPoint	1	Идентификатор конечной точки
WasBroadcast	1	Идентификатор транзакции
LinkQuality	1	Качество принятого сигнала от последнего узла на маршруте
RSSI	1	Уровень принятого сигнала от последнего узла на маршруте
IEEEAddress	8	64-битный адрес узла, приславший данные
NetworkAddress	2	16-битный адрес узла, приславший данные
AfDataLen	1	Длина следующего поля
AfData	1-63	Поле данных

sw_api_31 - 14 -

5. Использование кластеров МВее АРІ

Интерфейс MBee API базируется на передаче фреймов с использованием команды AF_DATA_REQUEST и получении запрошенных данных во фреймах с командой AF_DATA_RESPONSE (если отправлена одна из команд чтения и т.п.).

В MBee API используется конечная точка с идентификатором 0xE8. Идентификаторы кластеров, и возможности которые они предоставляют, приведены ниже.

5.1. Список кластеров МВее АРІ

Управление цифровыми портами модуля.

ClusterID	Описание
0x0001 - 0x0010	Включить активное состояние на цифровом выходе от 1 до 16
0x0081 - 0x0090	Включить неактивное состояние на цифровом выходе от 1 до 16

Чтение параметров модуля.

ClusterID	Описание
0x00FF	Получить дату ревизии прошивки модуля
0x0100	Получить информацию о версии модуля
0x0201	Получить период поллинга (Poll Rate)
0x0202	Получить период автоматического опроса портов ввода-вывода
0x0207	Получить адрес накопителя (агрегатора) данных автоматического опроса
0x0209	Получить значение встроенного датчика температуры

Запись параметров модуля.

ClusterID	Описание
0x0401	Установить период поллинга (Poll Rate)
0x0402	Установить период автоматического опроса портов ввода-вывода
0x0407	Установить адрес накопителя (агрегатора) данных автоматического опроса
0x0409	Установить значение встроенного датчика температуры

Данные портов ввода-вывода.

ClusterID	Описание
0x0101	Удаленный модуль отправил данные автоматически при входе в сеть или в
0,0101	цикле периодического опроса портов ввода-вывода
0x0102	Данные отправлены после нажатия пользователем кнопки на удаленном
0x0102	модуле
0x0103	Удаленный модуль отправил данные в ответ на запрос локального узла

sw_api_31 - 15 -

6. Управление цифровыми портами модуля.

Описание.

В зависимости от прошивки и конфигурации портов ввода-вывода модуль МВее может управлять 16-ю цифровыми линиями. Состояние уровня каждой цифровой линии может быть изменено при помощи команды, отправленной на соответствующий кластер.

Использование SREQ

1	2		2	1	1	2	1
Len = $0x0$	A Cmc	I = 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= см. гл. 5.1	
продолжени	1e						
1	1	1					
Options	Radius	AfDataLer	า = 0				

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Отсутствует.

sw_api_31 - 16 -

7. Чтение параметров модуля.

7.1. Получить дату ревизии прошивки модуля.

Описание.

Кластер 0x00FF предназначен для чтения даты ревизии прошивки модуля.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0	A Cmd	= 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= 0x00FF	
продолжени	ie						
1	1	1					
Options	Radius	AfDataLe	n = 0				

Ответ SRSP

1	2	1
Len = $0x01$	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1	
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId	

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

Поле	Длина	Описание
AfDataLen	1	Длина строки
FW Revision Date		Строка ASCII символов с датой ревизии прошивки модуля

sw_api_31 - 17 -

7.2. Получить информацию о версии модуля

Описание.

Кластер 0х0100 предназначен для чтения информации о версии модуля.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0		= 0x2401	DstAddr	DstEndpoint = 0xE8	SrcEndpoint = 0xE8	ClusterId = 0x0100	TransId
1	1	1					
Options	Radius	AfDataLer	า = 0				

Ответ SRSP

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

Поле	Длина	Описание
AfDataLen	1	AfDataLen = 5
Version	5	см. описание в гл. 11

sw_api_31 - 18 -

7.3. Получить период поллинга (Poll Rate)

Описание.

Кластер 0x0201 предназначен для чтения периода (в миллисекундах) поллинга. Эта команда доступна модулям, использующим спящий режим для экономии питания, и определяет интервал, с которым устройство пробуждается и опрашивает свой родительский узел.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0	A Cmd	= 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= 0x0201	
продолжени	e						
1	1	1					
Options	Radius	AfDataLer	n = 0				

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1	
Len = $0x03$	Cmd = 0x4882	Status	EndPoint	TransId	

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

Поле	Длина	Описание
AfDataLen	1	AfDataLen = 2
Poll Rate	2	Значение периода поллинга в миллисекундах

sw_api_31 - 19 -

7.4. Получить период автоматического опроса портов ввода-вывода

Описание.

Кластер 0x0202 предназначен для чтения периода (в секундах) автоматического опроса портов ввода-вывода. Эта команда доступна модулям, использующим автоматический самоопрос аналоговых и цифровых портов.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0	A Cmd	= 0x2401	DstAddr	DstEndpoint = 0xE8	SrcEndpoint = 0xE8	ClusterId = 0x0202	TransId
продолжени	1e						
1	1	1					
Options	Radius	AfDataLer	n = 0				

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1	
Len = $0x03$	Cmd = 0x4882	Status	EndPoint	TransId	

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

Поле	Длина	Описание
AfDataLen	1	AfDataLen = 2
AutoSampling Period	2	Значение периода автоопроса в секундах

sw_api_31 - 20 -

7.5. Получить адрес накопителя (агрегатора) данных автоматического опроса

Описание.

Кластер 0x0207 предназначен для чтения 64-х битного адреса узла, на который модуль периодически отсылает данные состояния портов ввода-вывода. Значение по умолчанию 0x0000000000000000 (данные будут отправляться координатору сети ZigBee).

Использование SREQ

1	2		2	1	1	2	1
Len = $0x0$	A Cmd	= 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= 0x0207	
продолжени	ie						
1	1	1					
Options	Radius	AfDataLe	n = 0				

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

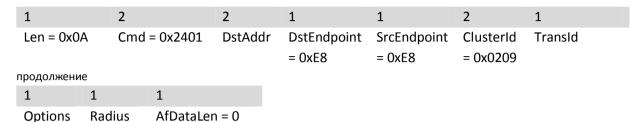
OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1	
Len = $0x03$	Cmd = 0x4882	Status	EndPoint	TransId	

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

Поле	Длина	Описание
AfDataLen	1	AfDataLen = 8
Aggregator IEEE Address	8	64-х битный адрес агрегатора данных


sw_api_31 -21-

7.6. Получить значение встроенного датчика температуры

Описание.

Кластер 0х0209 предназначен для чтения значения встроенного датчика температуры.

Использование SREQ

Ответ SRSP

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1	
Len = $0x03$	Cmd = 0x4882	Status	EndPoint	TransId	

OTBET AREQ (AF_DATA_RESPONSE)

Параметры.

•		
Поле	Длина	Описание
AfDataLen	1	AfDataLen = 2
Temperature	2	Значение встроенного датчика температуры

Пересчет значения в градусы Цельсия.

Встроенный датчик температуры использует 4.5 отсчета ADC на один градус Цельсия. Значение в 1480 отсчетов соответствует температуре 20 градусов. Текущее значение может быть переведено в градусы по формуле: (Temperature - 1480) / 4.5 + 25.

sw_api_31 - 22 -

8. Запись параметров модуля.

8.1. Установить период поллинга (Poll Rate)

Описание.

Кластер 0x0401 предназначен для установки периода (в миллисекундах) поллинга. Эта команда доступна модулям, использующим спящий режим для экономии питания, и определяет интервал, с которым устройство пробуждается и опрашивает свой родительский узел. Значение по умолчанию 1000 миллисекунд. Допустимые значения от 100 до 20000.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0	C Cmd	= 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= 0x0401	
продолжени	e						
1	1	1	2				
Options	Radius	AfDataLer	1 = 2 P	oll Rate			

Параметры.

Поле	Длина	Описание
Poll Rate	2	Значение периода поллинга в миллисекундах

Ответ SRSP

1	2	1
Len = $0x01$	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Отсутствует.

sw_api_31 - 23 -

8.2. Установить период автоматического опроса портов ввода-вывода

Описание.

Кластер 0x0402 предназначен для установки периода автоматического опроса портов вводавывода. Эта команда доступна модулям, использующим автоматический самоопрос аналоговых и цифровых портов. Значение по умолчанию 10 секунд. Допустимые значения от 0 (автоматический опрос отключен) до 65535 секунд.

Использование SREQ

1	2		2	1	1	2	1
Len = $0x0$	C Cmd	= 0x2401	DstAddr	DstEndpoint	SrcEndpoint	ClusterId	TransId
				= 0xE8	= 0xE8	= 0x0402	
продолжени	e						
1	1	1	2				
Options	Radius	AfDataLer	n = 2 A	utoSampling Pe	eriod		

Параметры.

Поле	Длина	Описание
AutoSampling Period	2	Значение периода автоопроса в секундах

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Отсутствует.

sw_api_31 - 24 -

8.3. Установить адрес накопителя (агрегатора) данных автоматического опроса

Описание.

Кластер 0х0407 предназначен для установки 64-х битного адреса узла, на который модуль периодически отсылает данные состояния портов ввода-вывода. Значение по умолчанию 0х00000000000000 (данные будут отправляться координатору сети ZigBee).

Использование SREQ

1	2		2	1	1	2	1
Len = 0x12	2 Cmd	= 0x2401	DstAddr	DstEndpoint = 0xE8	SrcEndpoint = 0xE8	ClusterId = 0x0407	TransId
продолжени	е						
1	1	1	8	•			
Options	Radius	AfDataLer	n = 8 A	aggregator IEEE	Address		

Параметры.

Поле	Длина	Описание
Aggregator IEEE Address	8	64-х битный адрес агрегатора данных *

Примечание. Если агрегатором назначается координатор сети ZigBee, то можно задать значение по умолчанию 0x000000000000000 или действительный IEEE адрес координатора.

Ответ SRSP

1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Отсутствует.

sw_api_31 - 25 -

8.4. Установить значение встроенного датчика температуры

Описание.

Кластер 0x0409 предназначен для установки значения встроенного датчика температуры. Принудительная установка температуры позволяет подстроить автоматическую одноточечную коррекцию температурного датчика.

Использование SREQ

1	2		2	1	1	2	1
Len = 0x0		= 0x2401	DstAddr	DstEndpoint = 0xE8	SrcEndpoint = 0xE8	ClusterId = 0x0409	Transld
1	1	1	2				
Options	Radius	AfDataLer	n = 2 T	emperature			

Параметры.

Поле	Длина	Описание
Temperature	2	Значение встроенного датчика температуры

Значение должно быть передано в отсчетах АЦП.

Из градусов Цельсия в отсчеты АЦП температуру следует преобразовать по формуле:

(tC - 25) / 4.5 + 1480

Ответ SRSP

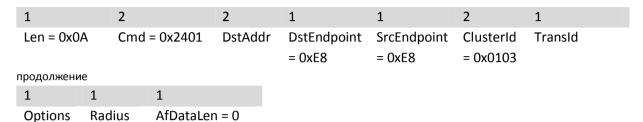
1	2	1
Len = 0x01	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = $0x03$	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Отсутствует.


sw_api_31 - 26 -

9. Чтение состояния цифровых и аналоговых портов ввода вывода

Описание.

Кластер 0x0103 предназначен для получения данных о состоянии портов ввода-вывода удаленного модуля.

Использование SREQ

Ответ AREQ

Ответ SRSP

1	2	1
Len = $0x01$	Cmd = 0x6401	Status

OTBET AREQ (AF_DATA_CONFIRM)

1	2	1	1	1
Len = 0x03	Cmd = 0x4882	Status	EndPoint	TransId

OTBET AREQ (AF_DATA_RESPONSE)

Параметры описаны в главе 9.1.

sw_api_31 - 27 -

9.1. Структура данных цифровых и аналоговых входов

Структура данных со значениями цифровых и аналоговых входов имеет переменную длину. Маски цифровых и аналоговых каналов определяют присутствие полей с данными. Так, если ни один бит в маске цифровых каналов не установлен в 1, то поле DigitalData не будет включено во фрейм. Для аналоговых портов значение будет представлено только, если соответствующий бит в аналоговой маске установлен в 1.

Поле	Длина	Описание		
Version	5	см. описание в гл. 11		
SamplingPeriod	2	Время автоопроса в секундах		
DigitalMask	2	Маска цифровых каналов		
		bit 15-0 DIO15 – DIO0		
AnalogMask	1	Маска аналоговых каналов		
		bit 3-0 ADC3 – ADC0		
ExtMask	1	Маска дополнительных параметров		
		bit 0 Vdd		
		bit 1 Temperature		
DigitalData	2	Данные цифровых каналов *		
AnalogData 0	2	Напряжение на аналоговом входе 0 **		
AnalogData 1	2	Напряжение на аналоговом входе 1 **		
AnalogData 2	2	Напряжение на аналоговом входе 2 **		
AnalogData 3	2	Напряжение на аналоговом входе 3 **		
AnalogData 4	2	Напряжение на аналоговом входе 4 **		
AnalogData 5	2	Напряжение на аналоговом входе 5 **		
AnalogData 6	2	Напряжение на аналоговом входе 6 **		
AnalogData 7	2	Напряжение на аналоговом входе 7 **		
Vdd	2	Внутреннее значение VDD модуля ***		
Temperature	2	Значение внутреннего датчика температуры ***		

^{*} Это поле отсутствует, если маска цифровых каналов равна нулю

Проеобразование отсчетов АЦП в вольты для 11-битного АЦП и опорного напряжения 3.3 Вольта может быть произведено по формуле:

V = ADC * 3.3 / 2047

sw_api_31 - 28 -

^{**} Это поле отсутствует, если соответствующий бит в маске аналоговых каналов равен нулю

^{***} Это поле отсутствует, если соответствующий бит в маске дополнительных каналов равен нулю

10. Автоматический циклический самоопрос модуля

Модули, поддерживающий данную функциональность, самостоятельно производят измерения портов ввода-вывода, формируют и высылают фрейм данных узлу (узлам) накапливающим данные (агрегатору).

Такая возможность может дать дополнительные преимущества по сравнению с системами, где задача циклического опроса возложена на агрегатор данных и может быть комбинирована с такой системой.

Идентификаторы кластера предоставляют способ различить событие, которое стало причиной отправки данных (см. кластеры 0x0101, 0x0102, 0x0103 в гл. 5.1). Структура данных идентична той, что описана в предыдущей главе.

Примечание.

Данные по кластерам 0x0101 и 0x0102 модуль высылает на адрес агрегатора, хранящийся в его энергонезависимой памяти. По кластеру 0x0103 модуль отвечает на адрес узла, приславшего запрос.

sw_api_31 - 29 -

11. Структура поля версии модулей МВее

Структура поля Version имеет длину 5 байт. Для локального модуля информация о версии может быть получена при помощи фреймов SYS_VERSION и SYS_RESET_IND (при сбросе модуля). Для удаленных модулей следует использовать фрейм AF_DATA_REQUEST на кластер 0x0100 (при получении данных портов ввода-вывода это поле тажкже доступно).

Поле	Длина	Описание		
TransportRev	1	Номер версии транспортного протокола		
TxPower	1	Уровень выходной мощности передатчика		
MajorRel	1	Тип прошивки модуля		
DeviceBuildType	1	Тип узла		
		0x01 Coordinator		
		0x02 Router		
		0x04 EndDevice		
BoardType	1	Номер аппаратной реализации модуля		

sw_api_31 - 30 -

12. Примеры фреймов

12.1. Анонс узла присоединившегося к сети

Входящие данные

FE-0D-**45-C1**-56-2C-**56-2C**-B6-16-44-01-00-4B-12-00-**00**-35

	Поле		Данные	Примечание
SOF	SOF		FE	
	LEN		0D	
	CMD		45-C1	Анонс узла
		SrcAddr	56-2C	(LSB) 0x2C56
		NwkAddr	56-2C	(LSB) 0x2C56
MT CMD		IEEEAddr	B6-16-44-01-00-4B-12-00	(LSB) 0x00124B00014416B6
	DATA	Capabilities	00	End Device
				Battary powered
				Receiver on when Idle Off
				Security capability None
FCS			35	

sw_api_31 - 31 -

12.2. Управление цифровым выходом

Исходящие данные

FE-0A-**24-01**-56-2C-**E8**-E8-**02-00**-8F-**10**-06-**00**-CE

	Поле		Данные	Примечание
SOF		FE		
	LEN		0A	
	CMD		24-01	AF_DATA_REQUEST
		DstAddr	56-2C	(LSB) 0x2C56
		DstEndpoint	E8	
		SrcEndpoint	E8	
MT CMD		ClusterId	02-00	(LSB) 0х0002 включить высокий
	DATA			уровень на выходе 2
		TransId	8F	
		Options	10	APS acknowledge
		Radius	06	
		AfDataLen	00	
FCS			CE	

Ответ SRSP

FE-01-64-01-00-64

	Поле		Данные	Примечание
SOF		FE		
	LEN		01	
MT CMD	CMD		64-01	SRSP
	DATA Status		00	Success
FCS		64	·	

Ответ AREQ

FE-03-**44-80**-00-**E8**-8F-**A0**

Поле		Данные	Примечание	
SOF			FE	
	LEN		03	
	CMD		44-80	AF_DATA_CONFIRM
MT CMD		Status	00	Success
	DATA	EndPoint	E8	
		TransId	8F	
FCS	·		A0	

sw_api_31 - 32 -

12.3. Данные цифровых и аналоговых входов

Входящие данные

FE-28-**48-81**-02-01-**E8**-00-**15**-B1-**B6-16-44-01-00-4B-12-00**-56-2C-**17**-02-05-02-04-02-**1E-00**-03-00-**83**-03-**01-00**-8B-00-**00-00**-06-01-**A3-07**-AD-05-**60**

Поле				Данные	Примечание
SOF				FE	
MT	LEN			28	
	CMD			48-81	AF_DATA_RESPONSE
	DATA	ClusterID		02-01	(LSB) 0x0102
					(данные отправлены
					после нажатия кнопки)
		EndPoint		E8	
		WasBroadcast		00	Unicast
		LinkQuality		15	
		RSSI		B1	
		IEEEAddress		B6-16-44-01-	(LSB)
				00-4B-12-00	0x00124B00014416B6
		NetworkAddress		56-2C	(LSB) 0x2C56
		AfDataLen		17	
		AfData	Version	02-05-02-04-	
				02-1E	
			SamplingPeriod	1E-00	(LSB) 0x001E (30 секунд)
			DigitalMask	03-00	(LSB) 0x0003
			AnalogMask	83	
			ExtMask	03	
			DigitalData	01-00	(LSB) 0x0001
			AnalogData 0	8B-00	(LSB) 0x008B
			AnalogData 1	00-00	(LSB) 0x0000
			AnalogData 7	06-01	(LSB) 0x0106
			Vdd	A3-07	(LSB) 0x07A3
			Temperature	AD-05	(LSB) 0x05AD
FCS				60	<u> </u>

sw_api_31 - 33 -

13. Техническая поддержка

Разработка и техническая поддержка

системы, модули и компоненты

Разработчик систем автоматизации и телеметрии

Телефон **+7 495 784 5766**

Электронная почта mbee@sysmc.ru

Сайт www.sysmc.ru

Производство, дистрибуция и поддержка

СКАНТИ РУС

Электронные компоненты от ведущих мировых производителей

Телефон **+7 495 781 4945**

Электронная почта lpw@scanti.ru

Сайт www.scanti.ru

sw_api_31 - 34 -